Experimental and Finite Element Simulation of Nano-indentation on Metal Matrix Composites: Hardness Prediction

author

Abstract:

The scientific importance of nanocomposites are being increased due to their improvedproperties. This paper is divided into two parts. First, Al-Al2O3 nanocomposite wasproduced by using ball milling technique followed by cold compaction and sintering.Microstructure and morphology studies were done through SEM, TEM, and EDX anal-ysis on the produced powder. The mechanical properties of the produced compositewere determined by the tensile test. Also, nano-indentation experiment was conductedon the produced composite to determine its hardness. Second, a 2-D axisymmetrymodel was implemented in ANSYS software to simulate the nano-indentation experi-ment on pure aluminum and Al-Al2O3 nanocomposite. A conical indenter with 70.3was considered in simulations. The results show that, a homogenous distribution of thereinforcement in the matrix was achieved after 20 h milling. The elastic modulus, yieldstrength, and the hardness of the produced composite were increased than the puremetal. The FE simulation results show a good agreement with the experimental resultsfor nano-indentation experiment. The scatter of the FE results from the experimentalresults in the pure metal is smaller than that observed for the nanocomposite.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Finite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers

A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated.  Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.

full text

Finite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers

A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated.  Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.

full text

simulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water

abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...

finite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers

a new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. the total elastic modulus of nano-composite is evaluated.  numerical results are in good agreement with the previous proposed theoretical modeling. higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.

full text

Studying on the fatigue behavior of Al- Al2O3 metal matrix nano composites processed through powder metallurgy

Excellent mechanical properties and fatigue performance of Al/Al2O3 metal-based nanocomposites caused to introduce this material as a good candidate for various applications. In this regard, the preparation and characterization of this composite can be considered as a hot issue for research. The study was carried out in several steps including: (i) preparation of Al/Al2O3 metal-based nanocompos...

full text

Spherical Indentation and Flow Property Measurement-Finite Element Simulation

Previous work by Au, Lucas, Sheckerd & Odette [1] and Haggag and Lucas [2] and others showed that ball indentation testing techniques can be used to evaluate flow properties. More recently Haggag et al [3] have extended and refined the general approach. This work is aimed at assessing the accuracy and reliability of this method based on finite element analysis (FEA) simulations of the ball inde...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 29  issue 1

pages  78- 86

publication date 2016-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023